유일성 정리1 1.7 Existence and Uniqueness of solutions for IVPs 오늘은 초기값 문제에 대한 해의 존재성과 유일성을 다뤄보도록 하겠다. 사실 이 단원은 증명이 필요한 단원이기는 하나 우리가 사용할 정리에 대한 증명은 공학수학을 벗어나는 내용이기에 생략하도록 하고 정리를 활용하는 방법에 대해서만 알아보도록 하자. 오늘 우리가 다룰 내용에는 case가 3가지 정도 존재한다. case1) 해가 없는 경우 $|y'|+|y|=0, y(0)=1$ case2) 해가 유일한 경우 $y'=2x, y(0)=1$ $y=x^2+1$ case3) 해가 무수히 많은 경우 $xy'=y-1, y(0)=1$ $y=1+cx$ 다음으로 위의 3가지 경우를 다룰 수 있는 정리에 대해 알아보록 하자. $y'=f(x,y), y(x.)=y. $ Thm1) Existence Theorem (존재정리) IVP $.. 2020. 3. 28. 이전 1 다음